Three SpoA-domain proteins interact in the creation of the flagellar type III secretion system in Helicobacter pylori
Publication in refereed journal


摘要Bacterial flagella are rotary nanomachines that contribute to bacterial fitness in many settings, including host colonization. The flagellar motor relies on the multiprotein flagellar motor-switch complex to govern flagellum formation and rotational direction. Different bacteria exhibit great diversity in their flagellar motors. One such variation is exemplified by the motor-switch apparatus of the gastric pathogen Helicobacter pylori, which carries an extra switch protein, FliY, along with the more typical FliG, FliM, and FliN proteins. All switch proteins are needed for normal flagellation and motility in H. pylori, but the molecular mechanism of their assembly is unknown. To fill this gap, we examined the interactions among these proteins. We found that the C-terminal SpoA domain of FliY (FliY(C)) is critical to flagellation and forms heterodimeric complexes with the FliN and FliM SpoA domains, which are -sheet domains of type III secretion system proteins. Surprisingly, unlike in other flagellar switch systems, neither FliY nor FliN self-associated. The crystal structure of the FliY(C)-FliN(C) complex revealed a saddle-shaped structure homologous to the FliN-FliN dimer of Thermotoga maritima, consistent with a FliY-FliN heterodimer forming the functional unit. Analysis of the FliY(C)-FliN(C) interface indicated that oppositely charged residues specific to each protein drive heterodimer formation. Moreover, both FliY(C)-FliM(C) and FliY(C)-FliN(C) associated with the flagellar regulatory protein FliH, explaining their important roles in flagellation. We conclude that H. pylori uses a FliY-FliN heterodimer instead of a homodimer and creates a switch complex with SpoA domains derived from three distinct proteins.
著者Lam KH, Xue C, Sun K, Zhang H, Lam WWL, Zhu Z, Ng JTY, Sause WE, Lertsethtakarn P, Lau KF, Ottemann KM, Au SWN
期刊名稱Journal of Biological Chemistry
頁次13961 - 13973

上次更新時間 2020-25-10 於 03:12