Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data
Publication in refereed journal

Times Cited
Web of Science2WOS source URL (as at 08/01/2022) Click here for the latest count
Altmetrics Information

Other information
AbstractDifferential Interferometric Synthetic Aperture Radar (D-InSAR) has been widely used to measure surface deformation over the Tibetan Plateau. However, the accuracy and applicability of the D-InSAR method are not well estimated due to the lack of in-situ validation. In this paper, we mapped the seasonal and long-term displacement of Tanggula (TGL) and Liangdaohe (LDH) permafrost regions with a stack of Sentinel-1 acquisitions using the Small Baseline Subset InSAR (SBAS-InSAR) method. In the TGL region, with its dry soils and sparse vegetation, the InSAR-derived surface-deformation trend was consistent with ground-based leveling results; long-term changes of the active layer showed a settlement rate of around 1 to 3 mm/a due to the melting of ground ice, indicating a degrading permafrost in this area. Around half of the deformation was picked up on monitoring, in contrast with in-situ measurements in LDH, implying that the D-InSAR method remarkably underestimated the surface-deformation. This phenomenon may be induced by the large soil-water content, high vegetation coverage, or a combination of these two factors in this region. This study demonstrates that surface deformation could be mapped accurately for a specific region with Sentinel-1 C-band data, such as in the TGL region. Moreover, although the D-InSAR technology provides an efficient solution for broad surface-deformation monitoring in permafrost regions, it shows a poor performance in the region with high soil-water content and dense vegetation coverage.
All Author(s) ListZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie
Volume Number10
Issue Number2
Pages114 - 125
LanguagesEnglish-United States

Last updated on 2022-09-01 at 00:20