A Genetic Algorithm with New Local Operators for Multiple Traveling Salesman Problems
Publication in refereed journal


Times Cited
Altmetrics Information
.

Other information
AbstractMultiple Traveling Salesman Problem (MTSP) is able to model and solve various real-life applications such as multiple scheduling, multiple vehicle routing and multiple path planning problems, etc. While Traveling Salesman Problem (TSP) focuses on searching a path of minimum traveling distance to visit all cities exactly once by one salesman, the objective of the MTSP is to find m paths for m salesmen with a minimized total cost - the sum of traveling distances of all salesmen through all of the respective cities covered. They have to start from a designated depot which is the departing and returning location of all salesmen. Since the MTSP is a NP-hard problem, a new effective Genetic Algorithm with Local operators (GAL) is proposed in this paper to solve the MTSP and generate high quality solution within a reasonable amount of time for real-life applications. Two new local operators, Branch and Bound (BaB) and Cross Elimination (CE), are designed to speed up the convergence of the search process and improve the solution quality. Results demonstrate that GAL finds a better set of paths with a 9.62% saving on average in cost comparing to two existing MTSP algorithms.
Acceptance Date21/01/2018
All Author(s) ListLo Kin Ming, Yi Wei Ying, Wong Pak Kan, Leung Kwong Sak, Leung Yee, Mak Sui Tung
Journal nameInternational Journal of Computational Intelligence Systems
Year2018
Volume Number11
Issue Number1
PublisherAtlantis Press
Pages692 - 705
ISSN1875-6891
LanguagesEnglish-United Kingdom
KeywordsMultiple Traveling Salesman Problem, Genetic Algorithm, Branch and Bound algorithm,
Local operators

Last updated on 2020-27-03 at 03:16