A Non-Classical Member of the Protein Disulfide Isomerase Family, PDI7 of Arabidopsis thaliana, Localizes to the cis-Golgi and Endoplasmic Reticulum Membranes.
Publication in refereed journal

Times Cited
Altmetrics Information

Other information
AbstractMembers of the protein disulfide isomerase (PDI)-C subfamily are chimeric proteins containing the thioredoxin (Trx) domain of PDIs, and the conserved N- and C-terminal Pfam domains of Erv41p/Erv46p-type cargo receptors. They are unique to plants and chromalveolates. The Arabidopsis genome encodes three PDI-C isoforms: PDI7, PDI12 and PDI13. Here we demonstrate that PDI7 is a 65 kDa integral membrane glycoprotein expressed throughout many Arabidopsis tissues. Using a PDI7-specific antibody, we show through immunoelectron microscopy that PDI7 localizes to the endoplasmic reticulum (ER) and Golgi membranes in wild-type root tip cells, and was also detected in vesicles. Tomographic modeling of the Golgi revealed that PDI7 was confined to the cis-Golgi, and accumulated primarily at the cis-most cisterna. Shoot apical meristem cells from transgenic plants overexpressing PDI7 exhibited a dramatic increase in anti-PDI7 labeling at the cis-Golgi. When N- or C-terminal fusions between PDI7 and the green fluorescent protein variant, GFP(S65T), were expressed in mesophyll protoplasts, the fusions co-localized with the ER marker, ER-mCherry. However, when GFP(S65T) was positioned internally within PDI7 (PDI7-GFPint), the fusion strongly co-localized with the cis-Golgi marker, mCherry-SYP31, and faintly labeled the ER. In contrast to the Golgi-resident fusion protein (Man49-mCherry), PDI7-GFPint did not redistribute to the ER after brefeldin A treatment. Protease protection experiments indicated that the Trx domain of PDI7 is located within the ER/Golgi lumen. We propose a model where PDI-C isoforms function as cargo receptors for proteins containing exposed cysteine residues, cycling them from the Golgi back to the ER.
All Author(s) ListYuen, Wang, Kang, Matsumoto, Christopher
Journal namePlant & cell physiology
Volume Number58
Issue Number6
Pages1103 - 1117
LanguagesEnglish-United Kingdom

Last updated on 2020-21-10 at 01:44