Exploiting total internal reflection geometry for efficient optical modulation of terahertz light
Publication in refereed journal

Times Cited
Web of Science18WOS source URL (as at 15/01/2021) Click here for the latest count
Altmetrics Information

Other information
AbstractEfficient methods to modulate terahertz (THz) light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm(2) to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz-0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.
All Author(s) ListXudong Liu, Edward Parrott, Benjamin Ung, Emma Pickwell-MacPherson
Journal nameAPL Photonics
Volume Number1
Issue Number7
LanguagesEnglish-United Kingdom
Web of Science Subject CategoriesOptics;Optics

Last updated on 2021-16-01 at 01:25