Disklikeness of planar self-affine tiles
Publication in refereed journal

香港中文大學研究人員
替代計量分析
.

其它資訊
摘要We consider the disklikeness of the planar self-affine tile T generated by an integral expanding matrix A and a consecutive collinear digit set D = {0, v, 2v, ⋯ , (|q|-1)v} ⊂ ℤ2. Let f(x) = x2+px+q be the characteristic polynomial of A. We show that the tile T is disklike if and only if 2|p| = |q+2|. Moreover, T is a hexagonal tile for all the cases except when p = 0, in which case T is a square tile. The proof depends on certain special devices to count the numbers of nodal points and neighbors of T and a criterion of Bandt and Wang (2001) on disklikeness. © 2007 American Mathematical Society.
著者Leung K.-S., Lau K.-S.
期刊名稱Transactions of the American Mathematical Society
出版年份2007
月份7
日期1
卷號359
期次7
出版社American Mathematical Society
出版地United States
頁次3337 - 3355
國際標準期刊號0002-9947
電子國際標準期刊號1088-6850
語言英式英語

上次更新時間 2021-24-02 於 01:48