A general privacy loss aggregation framework for distributed constraint reasoning
Refereed conference paper presented and published in conference proceedings


Times Cited
Altmetrics Information
.

Other information
AbstractDistributed constraint solving are useful in tackling constrained problems when agents are not allowed to share his/her private information to others and/or gathering all necessary information to solve the problem in a centralized manner is infeasible. With these two limitations, distributed algorithms solve the problem by coordinating agents to negotiate with each other. However, once information is exchanged during negotiation, the private information may be leaked from one agent to another. We propose and design a framework based on Valuation of Possible States (VPS) to evaluate how well a distributed algorithm preserves the totality of all private information onthe entire system when solving distributed constraint optimization problems, by allowing the uses of different aggregators aggregating agents' individual privacy loss. Two classes of aggregators: idempotent aggregators and risk based aggregators are proposed. We further proposed generalized inference rules to infer privacy loss of individual agents. We implement our work on four distributed constraint solving algorithms: Synchronous Branch and Bound (SynchBB), Asynchronous Distributed Constraint Optimization (ADOPT), Branch and Bound ADOPT (BnB-ADOPT), and Distributed Pseudo-tree Optimization Procedure (DPOP). Preliminary experimental evaluations on two benchmarks, Distributed Multi-Event Scheduling Problem (DiMES) and Random Distributed COP, comparing the four algorithms are performed. © 2013 IEEE.
All Author(s) ListLee J.H.M., Mak T.W.K., Shi Y.
Name of Conference25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2013
Start Date of Conference04/11/2013
End Date of Conference06/11/2013
Place of ConferenceWashington, DC
Country/Region of ConferenceUnited States of America
Year2013
Month12
Day1
Pages979 - 986
ISBN9781479929719
ISSN1082-3409
LanguagesEnglish-United Kingdom
KeywordsAggregation axiom, Distributed reasoning, privacy loss

Last updated on 2020-29-05 at 01:53