Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media
Publication in refereed journal


Times Cited
Altmetrics Information
.

Other information
AbstractIt is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.
All Author(s) ListGao K., Fu S., Gibson R.L., Chung E.T., Efendiev Y.
Journal nameJournal of Computational Physics
Year2015
Month8
Day5
Volume Number295
PublisherAcademic Press
Place of PublicationUnited States
Pages161 - 188
ISSN0021-9991
eISSN1090-2716
LanguagesEnglish-United Kingdom
KeywordsAnisotropic media, Elastic wave propagation, Generalized Multiscale Finite-Element Method (GMsFEM), Heterogeneous media

Last updated on 2021-24-01 at 02:55