Bioactive Scaffold Fabricated by 3D Printing for Enhancing Osteoporotic Bone Regeneration
Publication in refereed journal

Times Cited
Altmetrics Information

Other information
AbstractWe develop a poly (lactic-co-glycolic acid)/β-calcium phosphate (PLGA/TCP)-based scaffold through a three dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy(OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin–FAK (focal adhesion kinase)–ERK1/2 (extracellular signal-regulated kinase 1/2)–Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.
Acceptance Date29/09/2022
All Author(s) ListXiaoting Zhang, Xinluan Wang, Yuk-wai Lee, Lu Feng, Bin Wang, Qi Pan, Xiangbo Meng, Huijuan Cao, Linlong Li, Haixing Wang, Shanshan Bai, Lingchi Kong, Dick Ho Kiu Chow, Ling Qin, Liao Cui, Sien Lin, Gang Li
Journal nameBioengineering
Volume Number9
Issue Number10
Article number525
LanguagesEnglish-United Kingdom

Last updated on 2024-27-02 at 00:37