A novel image-based machine learning model with superior accuracy and predictability for knee arthroplasty loosening detection and clinical decision making
Publication in refereed journal
香港中文大學研究人員
全文
引用次數
替代計量分析
.
其它資訊
摘要Background
Loosening is the leading cause of total knee arthroplasty (TKA) revision. This is a heavy burden toward the healthcare system owing to the difficulty in diagnosis and complications occurring from the delay management. Based on automatic analytical model building, machine learning, may potentially help to automatically recognize the risk of loosening based on radiographs alone. The aim of this study was to build an image-based machine-learning model for detecting TKA loosening.
Methods
Image-based machine-learning model was developed based on ImageNet, Xception model and a TKA patient X-ray image dataset. Based on a dataset with TKA patient clinical parameters, another system was then created for developing the clinical-information-based machine learning model with random forest classifier. In addition, the Xception Model was pre-trained on the ImageNet database with python and TensorFlow deep learning library for the prediction of loosening. Class activation maps were also used to interpret the prediction decision made by model. Two senior orthopaedic specialists were invited to assess loosening from X-ray images for 3 attempts in setting up comparison benchmark.
Result
In the image-based machine learning loosening model, the precision rate and recall rate were 0.92 and 0.96, respectively. While for the accuracy rate, 96.3% for visualization classification was observed. However, the addition of clinical-information-based model, with precision rate of 0.71 and recall rate of 0.20, did not further showed improvement on the accuracy. Moreover, as class activation maps showed corresponding signals over bone-implant interface that is loosened radiographically, this confirms that the current model utilized a similar image recognition pattern as that of inspection by clinical specialists.
Conclusion
The image-based machine learning model developed demonstrated high accuracy and predictability of knee arthroplasty loosening. And the class activation heatmap matched well with the radiographic features used clinically to detect loosening, which highlighting its potential role in assisting clinicians in their daily practice. However, addition of clinical-information-based machine-learning model did not offer further improvement in detection. As far as we know, this is the first report of pure image-based machine learning model with high detection accuracy. Importantly, this is also the first model to show relevant class activation heatmap corresponding to loosening location.
Translational potential
The finding in this study indicated image-based machine learning model can detect knee arthroplasty loosening with high accuracy and predictability, which the class activation heatmap can potentially assist surgeons to identify the sites of loosening.
Loosening is the leading cause of total knee arthroplasty (TKA) revision. This is a heavy burden toward the healthcare system owing to the difficulty in diagnosis and complications occurring from the delay management. Based on automatic analytical model building, machine learning, may potentially help to automatically recognize the risk of loosening based on radiographs alone. The aim of this study was to build an image-based machine-learning model for detecting TKA loosening.
Methods
Image-based machine-learning model was developed based on ImageNet, Xception model and a TKA patient X-ray image dataset. Based on a dataset with TKA patient clinical parameters, another system was then created for developing the clinical-information-based machine learning model with random forest classifier. In addition, the Xception Model was pre-trained on the ImageNet database with python and TensorFlow deep learning library for the prediction of loosening. Class activation maps were also used to interpret the prediction decision made by model. Two senior orthopaedic specialists were invited to assess loosening from X-ray images for 3 attempts in setting up comparison benchmark.
Result
In the image-based machine learning loosening model, the precision rate and recall rate were 0.92 and 0.96, respectively. While for the accuracy rate, 96.3% for visualization classification was observed. However, the addition of clinical-information-based model, with precision rate of 0.71 and recall rate of 0.20, did not further showed improvement on the accuracy. Moreover, as class activation maps showed corresponding signals over bone-implant interface that is loosened radiographically, this confirms that the current model utilized a similar image recognition pattern as that of inspection by clinical specialists.
Conclusion
The image-based machine learning model developed demonstrated high accuracy and predictability of knee arthroplasty loosening. And the class activation heatmap matched well with the radiographic features used clinically to detect loosening, which highlighting its potential role in assisting clinicians in their daily practice. However, addition of clinical-information-based machine-learning model did not offer further improvement in detection. As far as we know, this is the first report of pure image-based machine learning model with high detection accuracy. Importantly, this is also the first model to show relevant class activation heatmap corresponding to loosening location.
Translational potential
The finding in this study indicated image-based machine learning model can detect knee arthroplasty loosening with high accuracy and predictability, which the class activation heatmap can potentially assist surgeons to identify the sites of loosening.
出版社接受日期04.07.2022
著者Lawrence Chun Man Lau, Elvis Chun Sing Chui, Gene Chi Wai Man, Ye Xin, Kevin Ki Wai Ho, Kyle Ka Kwan Mak, Michael Tim Yun Ong, Sheung Wai Law, Wing Hoi Cheung, Patrick Shu Hang Yung
期刊名稱Journal of Orthopaedic Translation
出版年份2022
月份9
卷號36
出版社Elsevier
頁次177 - 183
國際標準期刊號2214-031X
語言美式英語
關鍵詞Artificial intelligence, Machine learning, Xception model, Predictive modeling, Total knee arthroplasty, loosening