Two asparagine auxotrophic mutants (N3, N4) were isolated from the Gat- strain of Chinese hamster ovary cells, using a selection procedure modified from that of Goldfarb et al. (1). The defect in these mutants is due to a deficiency in asparagine synthetase activity. N3, in particular, had no measurable enzyme activity. Complementation analysis by PEG-mediated cell fusion showed that the auxotrophic phenotype behaved as a recessive trait; complementation was obtained between N3 or N4 and the pseudoauxotroph, Asn3, which has a temperature-sensitive asparagyl-tRNA synthetase activity. Revertants obtained by plating N3 or N4 in asparagine-free medium had about normal levels of asparagine synthetase activity and were produced with a probability of about 10(-6) per cell per generation. Three particular revertants of N3 and one revertant of N4 were shown to have asparagine synthetase activities that were different in thermolability from that of the wild type. This observation is consistent with the suggestion that N3 and N4 have defective structural genes rather than defective regulatory genes for asparagine synthetase.