Investigation of the Effects of Anthropogenic Pollution on Typhoon Precipitation and Microphysical Processes Using WRF-Chem
Publication in refereed journal



摘要Taking Typhoon Usagi (2013) as an example, this study used the Weather Research and Forecasting Model with Chemistry to investigate the influence of anthropogenic aerosols on typhoons. Three simulations (CTL, CLEAN, EXTREME) were designed according to the emission intensity of the anthropogenic pollution. The results showed that although anthropogenic pollution did not demonstrate clear influence on the track and strength of the typhoon, it clearly changed the precipitation, distribution of water hydrometeors, and microphysical processes. In the CLEAN experiment, the precipitation rate declined because cloud water collected by the rain decreased. Similarly, the precipitation rate decreased in the EXTREME experiment, because the autoconversion of cloud water to rain was restrained. Regarding precipitation type, the rate of stratiform precipitation in both the CLEAN and the EXTREME simulations was suppressed because the ice-phase microphysical processes weakened. Compared with the CTL run, the rate of stratiform precipitation at the periphery of the typhoon was reduced by about 28% in both the CLEAN and the EXTREME simulations. Moreover, the rate of convective precipitation within 140-160 km of the center of the typhoon in the EXTREME experiment was about 33% greater than in the CTL simulation. This increase was triggered by new convection at the periphery in the EXTREME simulation related to cloud water reevaporation. Finally, compared with the CTL experiment, the peaks of both convective and mixed precipitation in the CLEAN and EXTREME experiments shifted 10 km toward the typhoon periphery.
著者Jiang BL, Huang B, Lin WS, Xu SS
期刊名稱Journal of the Atmospheric Sciences,Journal of the Atmospheric Sciences
頁次1593 - 1610
關鍵詞Anthropogenic effects; Atm/Ocean Structure/ Phenomena; Cloud microphysics; Clouds; Hurricanes/typhoons; Mesoscale models; Models and modeling; Physical Meteorology and Climatology
Web of Science 學科類別Meteorology & Atmospheric Sciences

上次更新時間 2020-10-08 於 01:17