Asymptotic regularity of Daubechies' scaling functions
Publication in refereed journal


Times Cited
Web of Science6WOS source URL (as at 04/03/2021) Click here for the latest count
Altmetrics Information
.

Other information
AbstractLet phi(N), N greater than or equal to 1, be Daubechies' scaling function with symbol (1+e(-i xi)/2)(N) Q(N)(xi), and let s(p)(phi(N)), 0 < p less than or equal to 1, be the corresponding L-p Sobolev exponent. In this paper, we make a sharp estimation of s(p)(phi(N)), and we prove that there exists a constant C independent of N such that
All Author(s) ListLau KS, Sun QY
Journal nameProceedings of the American Mathematical Society
Detailed descriptionvol.128 no.4
Year2000
Month1
Day1
Volume Number128
Issue Number4
PublisherAMER MATHEMATICAL SOC
Pages1087 - 1095
ISSN0002-9939
eISSN1088-6826
LanguagesEnglish-United Kingdom
KeywordsFourier transform; scaling function; Sobolev exponent; wavelet
Web of Science Subject CategoriesMathematics; MATHEMATICS; Mathematics, Applied; MATHEMATICS, APPLIED

Last updated on 2021-05-03 at 00:45