A Double Emulsion-Based, Plastic-Glass Hybrid Microfluidic Platform for Protein Crystallization
Publication in refereed journal

Times Cited
Web of Science4WOS source URL (as at 21/10/2020) Click here for the latest count
Altmetrics Information

Other information
AbstractThis paper reports the design and construction of a plastic-glass hybrid microfluidic platform for performing protein crystallization trials in nanoliter double emulsions. The double emulsion-based protein crystallization trials were implemented with both the vapor-diffusion method and microbatch method by controlling the diffusion of water between the inner and outer phases and by eliminating water evaporation. Double emulsions, whose inner and outer environments can be easily adjusted, can provide ideal conditions to explore protein crystallization with the advantages of a convection-free environment and a homogeneous interface. The property of the water-oil interface was demonstrated to be a critical factor for nucleation, and appropriate surfactants should be chosen to prevent protein adsorption at the interface. The results from the volume effect study showed a trend of fewer crystals and longer incubation time when the protein solution volume became smaller, suggesting that the nucleation in protein crystallization process can be controlled by changing the volume of protein solutions. Finally, sparse matrix screening was achieved using the double emulsion-based microbatch method. The double emulsion-based approach for protein crystallization is a promising tool for enhancing the crystal quality by controlling the nucleation process.
All Author(s) ListZhu DY, Zhou XH, Zheng B
Journal nameMicromachines
Volume Number6
Issue Number11
PublisherMDPI AG
Pages1629 - 1644
LanguagesEnglish-United Kingdom
Keywordsdouble emulsion; microfluidic platform; microreactor; protein crystallization; screening; surface effect; volume effect
Web of Science Subject CategoriesInstruments & Instrumentation; Nanoscience & Nanotechnology; Science & Technology - Other Topics

Last updated on 2020-22-10 at 01:52