HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells
Publication in refereed journal

Times Cited
Web of Science230WOS source URL (as at 16/09/2021) Click here for the latest count
Altmetrics Information

Other information
AbstractRecently, there have been extensive research efforts on developing high performance organolead halide based perovskite solar cells. While most studies focused on optimizing the deposition processes of the perovskite films, the selection of the precursors has been rather limited to the lead halide/methylammonium (or formamidium) halide combination. In this work, we developed a new precursor, HPbI3, to replace lead halide. The new precursor enables formation of highly uniform formamidium lead iodide (FAPbI(3)) films through a one-step spin-coating process. Furthermore, the FAPbI(3) perovskite films exhibit a highly crystalline phase with strong (110) preferred orientation and excellent thermal stability. The planar heterojunction solar cells based on these perovskite films exhibit an average efficiency of 15.4% and champion efficiency of 17.5% under AM 1.5 G illumination. By comparing the morphology and formation process of the perovskite films fabricated from the formamidium iodide (FAI)/HPbI3, FAI/PbI2, and FAI/PbI2 with HI additive precursor combinations, it is shown that the superior property of the HPbI3 based perovskite films may originate from 1) a slow crystallization process involving exchange of H+ and FA(+) ions in the PbI6 octahedral framework and 2) elimination of water in the precursor solution state.
All Author(s) ListWang F, Yu H, Xu HH, Zhao N
Journal nameAdvanced Functional Materials
Volume Number25
Issue Number7
Pages1120 - 1126
LanguagesEnglish-United Kingdom
Web of Science Subject CategoriesChemistry; Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science; Materials Science, Multidisciplinary; Nanoscience & Nanotechnology; Physics; Physics, Applied; Physics, Condensed Matter; Science & Technology - Other Topics

Last updated on 2021-17-09 at 01:29