Callus formation is related to the expression ratios of estrogen receptors-alpha and -beta in ovariectomy-induced osteoporotic fracture healing
Publication in refereed journal

Times Cited
Altmetrics Information

Other information
This study characterizes ovariectomized (OVX)-induced osteoporotic fracture healing with focus on estrogen receptors (ERs). Callus formation plays a critical role in fracture healing, and ERs are well-known mechanosensors in osteogenic pathways. It was hypothesized that callus formation was related to and partially determined by the difference in expression patterns of ERs in both normal and OVX-induced osteoporotic fractures.

Closed femoral fracture in SHAM and ovariectomized rats were used in this study. Weekly callus width (CW) and area (CA), endpoint mechanical properties, gene expressions of Col-1, BMP-2, ER-α, ER-β and ER-α:ER-β ratios (ER-ratios), and correlations were assessed at 2, 4 and 8 weeks post-fracture.

CW and CA results confirmed that OVX-induced osteoporotic fracture was delayed at 2–4 weeks with impaired endpoint mechanical properties. Gene expressions of ER-α and ER-β were higher in the SHAM group at week 2 (p < 0.05) and later lowered at week 8; whereas the OVX group showed an opposing trend. Moderate correlation existed between ER-α and BMP-2 (0.545, p = 0.003), and ER-ratio and BMP-2 (0.601, p = 0.001), and BMP-2 to CW and CA (r = 0.709, p = 0.000 and r = 0.588, p = 0.001, respectively). ER-α and ER-β proteins expressions were confirmed by immunohistochemistry at the fracture callus in reparative progenitor cells, osteoblasts- and osteoclasts-like cells.

We conclude that the delayed healing rate and impaired callus quality in OVX-induced osteoporotic fracture is related to the delayed expression of ERs. A high ER-α:ER-β ratio favors callus formation.
All Author(s) ListChow SK, Leung KS, Qin L, Wei FY, Cheung WH
Journal nameArchives of Orthopaedic and Trauma Surgery
Volume Number134
Issue Number10
Pages1405 - 1416
LanguagesEnglish-United Kingdom
KeywordsEstrogen receptors; Fracture healing; Osteoporosis
Web of Science Subject CategoriesOrthopedics; Surgery

Last updated on 2021-22-09 at 00:51