Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong
Publication in refereed journal

Times Cited
Web of Science167WOS source URL (as at 13/09/2021) Click here for the latest count
Altmetrics Information

Other information
AbstractThis paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments-an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index-physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28A degrees C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.
All Author(s) ListCheng V, Ng E, Chan C, Givoni B
Journal nameInternational Journal of Biometeorology
Detailed descriptionDOI 10.1007/s00484-010-0396-z .
Volume Number56
Issue Number1
Pages43 - 56
LanguagesEnglish-United Kingdom
KeywordsHong Kong; Longitudinal; Outdoor comfort; Thermal comfort; Wind
Web of Science Subject CategoriesBiophysics; BIOPHYSICS; Environmental Sciences; ENVIRONMENTAL SCIENCES; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; METEOROLOGY & ATMOSPHERIC SCIENCES; Physiology; PHYSIOLOGY

Last updated on 2021-14-09 at 00:12