Comment on 'Solving the two-mode squeezed harmonic oscillator and the k th-order harmonic generation in Bargmann-Hilbert spaces'
Publication in refereed journal

香港中文大學研究人員

引用次數
替代計量分析
.

其它資訊
摘要Recently Zhang (2013 J. Phys. A: Math. Theor. 46 455302) proposed an analytical approach to solve the time-independent Schrodinger equation for the single-mode and two-mode squeezed harmonic oscillators in the Bargmann space of entire functions. In this comment we show that the eigenfunctions of these two systems exist in closed form and are expressed in terms of the Hermite polynomials. Moreover, since both oscillators exhibit the SU( 1,1) dynamical symmetry, the eigenvalue problem can be tackled in a unified manner. In the Hilbert space of analytic functions of a complex variable in the unit disc, the energy eigenvalue equations involve first-order ordinary differential equations only, so we can easily solve these equations to obtain simple closed-form solutions.
著者Lo CF
期刊名稱Journal of Physics A: Mathematical and Theoretical
出版年份2014
月份2
日期21
卷號47
期次7
出版社IOP Publishing: Hybrid Open Access
國際標準期刊號1751-8113
電子國際標準期刊號1751-8121
語言英式英語
關鍵詞Bargmann space; squeezed harmonic oscillator; SU(1,1) Lie algebra
Web of Science 學科類別Physics; Physics, Mathematical; PHYSICS, MATHEMATICAL; Physics, Multidisciplinary; PHYSICS, MULTIDISCIPLINARY

上次更新時間 2020-07-08 於 01:12