The unconventional P-loop NTPase OsYchF1 and its regulator OsGAP1 play opposite roles in salinity stress tolerance
Publication in refereed journal

Times Cited
Web of Science16WOS source URL (as at 19/10/2020) Click here for the latest count
Altmetrics Information

Other information
AbstractYchF proteins are a group of mysterious but ubiquitous unconventional G-proteins found in all kingdoms of life except Archaea. Their functions have been documented in microorganisms, protozoa and human, but those of plant YchF homologues are largely unknown. Our group has previously shown that OsYchF1 and its interacting protein, OsGAP1, play opposite roles in plant defense responses. OsGAP1 was found to stimulate the GTPase/ATPase activities of OsYchF1 and regulate its subcellular localization. In this report, we demonstrate that both OsYchF1 and OsGAP1 are localized mainly in the cytosol under NaCl treatment. The ectopic expression of OsYchF1 in transgenic Arabidopsisthaliana leads to reduced tolerance towards salinity stress, while the ectopic expression of OsGAP1 has the opposite effect. Similar results were also obtained with the Arabidopsis homologues, AtYchF1 and AtGAP1, by using AtGAP1 overexpressors and underexpressors, as well as an AtYchF1-knockdown mutant. OsYchF1 and OsGAP1 also exhibit highly significant effects on salinity-induced oxidative stress tolerance. The expression of OsYchF1 suppresses the anti-oxidation enzymatic activities and increases lipid peroxidation in transgenic Arabidopsis, and leads to the accumulation of reactive oxygen species (ROS) in tobacco BY-2 cells, while the ectopic expression of OsGAP1 has the opposite effects in these two model systems.
All Author(s) ListCheung MY, Li MW, Yung YL, Wen CQ, Lam HM
Journal namePlant, Cell and Environment
Volume Number36
Issue Number11
Pages2008 - 2020
LanguagesEnglish-United Kingdom
Keywordsabiotic stress; oxidative stress; unconventional G-proteins
Web of Science Subject CategoriesPlant Sciences; PLANT SCIENCES

Last updated on 2020-20-10 at 01:18