Fast and Accurate 3-D Registration of HR-pQCT Images
Publication in refereed journal


摘要High-resolution peripheral quantitative computed tomography (HR-pQCT) is a new noninvasive bone imaging technology that generates high-resolution 3-D images for quantitatively analysis of the bone microarchitecture in human. To enable quantitative evaluation of bone changes, either bone gain or loss, accurate alignment between the baseline and follow-up scans of the same individual is necessary. The major difficulties in achieving efficient and automatic registration of the HR-pQCT data are the large data size, deformations in the nonskeletal structures, and the complexity of the trabecular bone geometry. In this paper, we propose an automatic surface-based approach for fast and accurate registration of the HR-pQCT data, where the rigid registration is applied on the surfaces of the bony structures extracted from the grayscale HR-pQCT. The bony structure segmentation is performed via an automatic method that can adaptively determine the thresholds for separating the bony structure from the background and nonskeletal tissues. Experimental results performed on ten pairs of baseline and follow-up wrist scans of five adolescents and five elderly patients with osteoporosis showed the advantage of the proposed method in the high degree of automation, while the resultant parameters describing bone mineral density and trabecular architecture after registration were comparable with the outputs of the scanner's software. This automatic and accurate matching procedure may contribute to the clinical application and research of HR-pQCT.
著者Shi L, Wang DF, Hung VWY, Yeung BHY, Griffith JF, Chu WCW, Heng PA, Cheng JCY, Qin L
期刊名稱IEEE Transactions on Information Technology in Biomedicine
出版社Institute of Electrical and Electronics Engineers (IEEE)
頁次1291 - 1297
關鍵詞Bone mineral density; HR-pQCT; rigid registration
Web of Science 學科類別Computer Science; Computer Science, Information Systems; COMPUTER SCIENCE, INFORMATION SYSTEMS; Computer Science, Interdisciplinary Applications; COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS; Mathematical & Computational Biology; MATHEMATICAL & COMPUTATIONAL BIOLOGY; Medical Informatics; MEDICAL INFORMATICS

上次更新時間 2021-23-09 於 23:53