Comparison inequalities for heat semigroups and heat kernels on metric measure spaces
Publication in refereed journal

香港中文大學研究人員

引用次數
替代計量分析
.

其它資訊
摘要We prove a certain inequality for a subsolution of the heat equation associated with a regular Dirichlet form. As a consequence of this inequality, we obtain various interesting comparison inequalities for heat semigroups and heat kernels, which can be used for obtaining pointwise estimates of heat kernels. As an example of application, we present a new method of deducing sub-Gaussian upper bounds of the heat kernel from on-diagonal bounds and tail estimates. (C) 2010 Elsevier Inc. All rights reserved.
著者Grigor'yan A, Hu JX, Lau KS
期刊名稱Journal of Functional Analysis
詳細描述To ORKTS:
出版年份2010
月份11
日期15
卷號259
期次10
出版社Elsevier
頁次2613 - 2641
國際標準期刊號0022-1236
電子國際標準期刊號1096-0783
語言英式英語
關鍵詞Dirichlet form; Heat kernel; Heat semigroup; Maximum principle
Web of Science 學科類別Mathematics; MATHEMATICS

上次更新時間 2021-17-02 於 23:44