Paclitaxel Induces Immunogenic Cell Death in Ovarian Cancer via TLR4/IKK2/SNARE-Dependent Exocytosis
Publication in refereed journal


引用次數
Scopus ( 22/11/2020)
替代計量分析
.

其它資訊
摘要Emerging evidence shows that the efficacy of chemotherapeutic drugs is reliant on their capability to induce immunogenic cell death (ICD), thus transforming dying tumor cells into antitumor vaccines. We wanted to uncover potential therapeutic strategies that target ovarian cancer by having a better understanding of the standard-of-care chemotherapy treatment. Here, we showed in ovarian cancer that paclitaxel induced ICD-associated damage-associated molecular patterns (DAMP, such as CALR exposure, ATP secretion, and HMGB1 release) in vitro and elicited significant antitumor responses in tumor vaccination assays in vivo. Paclitaxel-induced TLR4 signaling was essential to the release of DAMPs, which led to the activation of NF-κB{\textendash}mediated CCL2 transcription and IkappaB kinase 2{\textendash}mediated SNARE-dependent vesicle exocytosis, thus exposing CALR on the cell surface. Paclitaxel induced endoplasmic reticulum stress, which triggered protein kinase R{\textendash}like ER kinase activation and eukaryotic translation initiation factor 2α phosphorylation independent of TLR4. Paclitaxel chemotherapy induced T-cell infiltration in ovarian tumors of the responsive patients; CALR expression in primary ovarian tumors also correlated with patients{\textquoteright} survival and patient response to chemotherapy. These findings suggest that the effectiveness of paclitaxel relied upon the activation of antitumor immunity through ICD via TLR4 and highlighted the importance of CALR expression in cancer cells as an indicator of response to paclitaxel chemotherapy in ovarian cancer.
出版社接受日期20.04.2020
著者Lau Tat San, Chan Loucia Kit Ying, Man Gene Chi Wai, Wong Chi Hang, Lee Jacqueline Ho Sze, Yim So Fan, Cheung Tak Hong, McNeish Iain A., Kwong Joseph
期刊名稱Cancer Immunology Research
出版年份2020
月份8
卷號8
期次8
出版社American Association for Cancer Research
頁次1099 - 1111
國際標準期刊號2326-6066
電子國際標準期刊號2326-6074
語言英式英語

上次更新時間 2020-22-11 於 23:50