Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals
Publication in refereed journal

替代計量分析
.

其它資訊
摘要The development of well-defined TiO2 nanoarchitectures is a versatile strategy to achieve high-efficiency photocatalytic performance. In this study, mesoporous TiO2 nanofibers consisting of oriented nanocrystals were fabricated by a facile vapothermal-assisted topochemical transformation of preformed H-titanate nanobelts. The vapothermal temperature is crucial in tuning the microstructures and photocatalytic redox properties of the resulting mesoporous TiO2 nanofibers. The microstructures were characterized with XRD, TEM, XPS and nitrogen adsorption-desorption isotherms, etc. The photocatalytic activities were evaluated by photocatalytic oxidation of organic pollutant (Rhodamine B as an example) as well as photocatalytic reduction of water to generate hydrogen (H-2). The nanofibers vapothermally treated at 150 degrees C showed the highest photocatalytic activity in both oxidation and reduction reactions, 2 times higher than that of P25. The oriented alignment and suitable mesoporosity in the resulting nanofiber architecture were crucial for enhancing photocatalytic performances. The oriented alignment of anisotropic anatase nanocrystals shall facilitate faster vectorial charge transportation along the nanofibers architecture. And, the suitable mesoporosity and high surface area would also effectively enhance the mass exchange during photocatalytic reactions. We also demonstrate that efficient energy-recovering photocatalytic water treatments could be accomplished by a cascading oxic-anoxic process where the dye is degraded in the oxic phase and hydrogen is generated in the successive anoxic phase. This study showcases a novel and facile method to fabricate mesoporous TiO2 nanofibers with high photocatalytic activity for both clean energy production and environmental purification. (C) 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
著者Guocheng Huang, Xueyan Liu, Shuangru Shi, Sitan Li, Zhengtao Xiao, Weiqian Zhen, Shengwei Liu, Po Keung Wong
期刊名稱Chinese Journal of Catalysis
出版年份2020
月份1
卷號41
期次1
出版社SCIENCE PRESS
頁次50 - 61
國際標準期刊號0253-9837
電子國際標準期刊號1872-2067
語言美式英語
關鍵詞TiO2 nanofiber, Photocatalysis, Pollutant degradation, Hydrogen production

上次更新時間 2020-01-06 於 23:47